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Abstract
Using the momentum space representation, we determine the energy
eigenvalues, eigenfunctions and the high-temperature thermodynamic
properties of the Dirac oscillator in one dimension in the presence of a minimal
length given by (�X)min = h̄

√
β, where β is the deformation parameter of the

modified commutation relation [X,P ] = ih̄(1 + βP 2). The obtained results
suggest that the effect of the minimal length could be detected in ultrarelativistic
heavy-ion collisions.

PACS numbers: 02.40.Gh, 03.65.Ge

1. Introduction

In a series of papers, Kempf et al [1–4] introduced a deformed quantum mechanics based on
modified commutation relations [Xi, Pj ] = ih̄[(1 + βP 2)δij + β ′PiPj ]. These commutations
relations lead to a generalized Heisenberg uncertainty (GUP) which define non-zero minimum
uncertainties in position and/or momentum. A non-zero minimum position uncertainty or
minimal length has first appeared in the context of perturbative string theory [5–7]. One
major feature of this finding is that the physics below such a scale becomes inaccessible and
then defining a natural cut-off which prevents from the usual UV divergences. The other
consequence of such a GUP is the appearance of an intriguing UV/IR mixing. This mixing
between UV and IR divergences, first noted in the ADS/CFT correspondence [8, 9], is also
a feature of non-commutative quantum field theory [10, 11]. Physically, the UV/IR mixing
allows us to probe high-energy physics by low-energy physics. This observation justifies the
use of quantum mechanics to study quantum systems in the presence of minimal lengths. On
the other hand, some scenarios have been proposed where the minimal length is related to
large extra dimensions [12], to the running coupling constant [13] and to the physics of black
hole production [14].
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Recently, the Schrödinger equation in the momentum space representation for
the harmonic oscillator with minimal lengths in arbitrary dimensions has been solved
[1, 2, 15]. The cosmological constant problem and the classical limit of the physics with
minimal lengths have also been investigated [16, 17]. On the other hand, the effect of the
minimal length on the energy spectrum of the 3D Coulomb potential has been studied in
[18, 19] and of the 3D Dirac oscillator using supersymmetric quantum mechanics in [20]. The
Casimir force for the electromagnetic field in the presence of the minimal length has also been
calculated [21, 22].

In this paper, we solve exactly the Dirac equation in the momentum space representation
with an oscillator-like interaction [23, 24], namely the Dirac oscillator in one dimension in
the presence of a minimal length. In the case without the minimal length, the Dirac oscillator
in one dimension has been investigated by the Green’s function technique [25] and by the
coherent states approach [26]. On the other hand, the Dirac oscillator in one dimension
possesses physical applications in semiconductor physics [27].

The rest of the paper is organized as follows. In section 2, we introduce the main relations
of quantum mechanics with generalized Heisenberg uncertainty principle. In section 3, we
solve exactly the Dirac equation in one dimension with the oscillator-like interaction in the
framework of GUP in the momentum space representation. In section 4, the high-temperature
thermal properties are derived. Section 4 is left for concluding remarks.

2. Quantum mechanics with the generalized Heisenberg relation

Following [2], we consider the following simple one-dimensional realization of the position
and momentum operators:

X = ih̄(1 + βp2)
∂

∂p
, P = p, (1)

where β � 0 is a small parameter. This representation leads to the following generalized
commutator and uncertainty relations:

[X,P ] = ih̄(1 + βp2), (2)

�X�P � h̄

2
[1 + β(�P)2]. (3)

The peculiarity of (3) is that it exhibits the UV/IR mixing phenomenon which allows us to
probe short-distance physics (UV) from the long-distance one (IR). A minimization of (3)
with respect to �P gives the following minimal length:

(�X)min = h̄
√

β. (4)

This scale, like the UV/IR mixing, reveals the non-local character of the models based on
equations (1)–(3). Then we have no localized eigenfunctions in the x-space. So, any eigenvalue
problem can be solved by going to the momentum space.

The choice of the constant γ determines only the squeezing degree of the momentum
space measure ∫

dp

(1 + βp2)
1− γ

β

|p〉〈p| = 1. (5)

Before ending this section, let us point that the energy eigenvalues remain unchanged
if we use the following representation of the position and momentum operators: X =
ih̄

[
(1 + βp2) ∂

∂p
+ γf (p)

]
and P = p, and then we use in the following the simple algebra with

γ = 0.



An exact solution of the one-dimensional Dirac oscillator in the presence of minimal lengths 5127

3. The Dirac oscillator in one dimension

The stationary equation describing the Dirac oscillator in one dimension is given by [23]

cα(P − iβmωX)� + βmc2� = E�, (6)

where m is the rest mass, ω is the classical frequency of the oscillator and � = (
f
g

)
is a

two-component spinor. We point that equation (6) is obtained from the Dirac equation in one
dimension by the substitution P → P − iβmωX.

Using the following representation of Dirac matrices α and β:

α =
(

0 −i
i 0

)
, β =

(
1 0
0 −1

)
, (7)

we obtain the following simultaneous equations:

c(−iP + mωX)g = (E − mc2)f, (8)

c(iP + mωX)f = (E + mc2)g. (9)

In the momentum space realization of the position and momentum operators (1), we have

−ipg + ih̄mω(1 + βp2)
∂g

∂p
= (E − mc2)

c
f, (10)

ipf + ih̄mω(1 + βp2)
∂f

∂p
= (E + mc2)

c
g. (11)

This system gives the following differential equation for the component f :[
−m2ω2h2(1 + βp2)2 ∂2

∂p2
− 2m2ω2h̄2βp(1 + βp2)

∂

∂p
+ p2 (1 − mωh̄β)

]
f (p)

=
(

E2 − m2c4

c2
+ mωh̄

)
f (p). (12)

With the aid of the new variable q defined by p ∈ (−∞, +∞) → q ∈ (− π

2mωh̄
√

β
, + π

2mωh̄
√

β

)
q = 1

mωh̄
√

β
arctan p

√
β (13)

and setting ε = E2−m2c4

c2 + mωh̄, we write equation (12) as[
∂2

∂q2
− (1 − mωh̄β)

β
tan2(qmωh̄

√
β) + ε

]
f (q) = 0. (14)

Let us set f (q) = vλh(u) where the variables u and v are given by

u = sin(mωh̄
√

βq), v = cos(mωh̄
√

βq). (15)

Then (14) becomes

(1 − u2)h′′(u) − (2λ + 1)uh′(u)

+

[(
λ(λ − 1) − 1 − mωh̄β

(mωh̄β)2

)
u2

v2
−

(
λ − ε

m2ω2h̄2β

)]
h(u) = 0. (16)

To reduce (16) to a class of known differential equations, we first eliminate the term
proportional to u2

v2 by setting

λ(λ − 1) − 1 − mωh̄β

(mωh̄β)2
= 0. (17)
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This leads to the following expressions for λ:

λ1 = 1

mωh̄β
, λ2 = 1 − 1

mωh̄β
. (18)

The solution associated with λ2 is rejected unless we impose the condition mωh̄β > 1.

However, this condition contradicts the generalized uncertainty principle given by (3). In fact,
since

√
h̄

mω
is the characteristic length of the oscillator and h̄

√
β is the minimal length below it

the physics becomes experimentally inaccessible; we must have mωh̄β < 1. In the following,
we set λ1 = λ.

A polynomial solution to equation (16) is obtained by imposing the following condition:
ε

m2ω2h̄2β
− λ = n(n + 2λ), (19)

with n a non-negative integer.
Then equation (16) is written as

(1 − u2)h′′
1(u) − (2λ + 1)uh′

1(u) + n(n + 2λ)h1(u) = 0, (20)

whose solution is given in terms of Gegenbauer’s polynomials

h (u) = NCλ
n (u) , (21)

with N a normalization constant. Then the momentum eigenfunctions of the one-dimensional
Dirac oscillator in the presence of a minimal length are given by

f (p) = NvλCλ
n (u) (22)

and

g(p) = ic√
β(E + mc2)

(
u

v
+ mωh̄βv

∂

∂u

)
f (u). (23)

Using the following property of Gegenbauer’s polynomials [28]:

d

du
Cλ

n(u) = 2λCλ+1
n−1(u), (24)

we finally obtain

fn(u) = NvλCλ
n(u), (25)

gn(u) = 2Nc√
β(En + mc2)

(1 − u2)
λ+1

2 Cλ+1
n−1(u). (26)

Returning to the old variable p using the relations

u = p
√

β√
1 + βp2

, v = 1√
1 + βp2

, (27)

we obtain

fn(u) = N(1 + βp2)−λ/2Cλ
n

(
p
√

β√
1 + βp2

)
, (28)

gn(u) = 2Nc√
β(En + mc2)

(1 + βp2)−λ−1Cλ+1
n−1

(
p
√

β√
1 + βp2

)
. (29)
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The normalization constant N is calculated from the normalization condition which follows
from the modified closure relation (5)∫

dp

1 + βp2
[|fn|2 + |gn|2] = 1. (30)

Inserting (28) and (29) in (30) and using the following identity [28]:∫ +1

−1
du(1 − u2)ν− 1

2
(
Cν

n(u)
)2 = π21−2ν(2ν + n)

n!(n + ν)[(ν)]2
, (31)

we obtain

N = 2λβ
1
4√

2π

[
(2λ + n)

n!(n + λ)[(λ)]2
+

c2

β(En + mc2)2

(2λ + n + 1)

(n − 1)!(n + λ)[(λ + 1)]2

]− 1
2

. (32)

Let us now check if the wavefunctions given by (28) and (29) are physically acceptable.
Following [2], we must have

〈p2〉 =
∫

dp

1 + βp2
p2[|fn|2 + |gn|2] < ∞ (33)

or ∫
dp

1 + βp2
p2 |fn|2 < ∞ and

∫
dp

1 + βp2
p2 |gn|2 < ∞. (34)

In fact, for the small component, the convergence is obvious since λ is positive and gn behaves
like p−2λ−2. For the large component, we have fn ∼ p−2λ and then the convergence criterion
requires λ > 1

2 . This leads to the following admissible minimal characteristic length of the
Dirac oscillator:

lmin =
√

h̄

mω
= (�X)min√

2
. (35)

This is an expected result since the concept of minimal deals with quantum mechanical
extended objects.

The energy spectrum is extracted from (19) which leads to

εn = m2ω2h̄2β(n2 + (2n + 1)λ). (36)

Using the expression of λ given by equation (18) and εn, we obtain

En = ±mc2

√
1 + β

ω2h̄2n2

c2
+ 2n

ωh̄

mc2
, n = 0, 1, 2, . . . . (37)

Expanding to first order in β, we obtain

En = ±mc2

√
1 + 2n

h̄ω

mc2

[
1 ± βh̄2ω2

2c2

n2

1 + 2n h̄ω
mc2

]
. (38)

The first term in (38) is the energy spectrum of the usual one-dimensional Dirac oscillator and
the second term represents the correction due to the presence of the minimal length. Here
we note the dependence on n2 which is a feature of hard confinement. This is a natural
consequence since our original problem is mapped to the motion of a point particle near the
surface of a sphere which is in essence a motion in potential wells. In our case, the boundaries
of the well are placed at ± π

2mh̄ω
√

β
. An other interesting property of the energy levels given by

(37) is that the energy level spacing becomes constant for large n

lim
n→∞ |�En| = h̄ωmc

√
β. (39)
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Figure 1. Plot of energy levels spacing �En versus the quantum number n for different values of
the minimal length

√
β.

This means that the energy continuum, for large n, of the Dirac oscillator without the minimal
length disappears in the presence of the minimal length and that, in this case, the behaviour of
the Dirac oscillator can be described for large n by a non-relativistic harmonic oscillator with
frequency � = ωmc

√
β. The variation of �En for different values of the minimal length

h̄
√

β is shown in figure 1.
The non-relativistic limit is obtained, as in the usual case, by setting E = mc2 + Enr with

the assumption that mc2 	 Enr . A Taylor expansion of (37) gives

En ≈ mc2 + nh̄ω

(
1 +

βh̄ωmn

2

)
− n2h̄2ω2

2mc2

(
1 +

βh̄ωmn

2

)2

. (40)

It is clear that besides the rest energy of the particle, the second and third terms represent,
respectively, the energy of the non-relativistic oscillator and the relativistic correction both in
the presence of the minimal length.

The corrections to the ordinary harmonic oscillator are obtained by setting β = 0 in (40)
or directly by setting β = 1

m2c2 in (37) followed by a Taylor expansion. The last relation
implies (�X)min = h̄c

mc2 .

Let us now study the limit β → 0. In this limit, we have λ → ∞. Using the following
relations [28]:

lim
λ→∞

λ− n
2 C

λ
2
n

(
x

√
2

λ

)
= 2− n

2

n!
Hn(x), lim

λ→∞
(λ + a)

(λ)
e−a ln λ = 1, (41)

the doubling formula

(2x) = 22x−1

√
π

(x)

(
x +

1

2

)
(42)

and observing that (to O(β2))

(1 + βp2)−
λ
2 = exp

(
− p2

2mh̄ω

)
, (43)
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we obtain

fn(p) = ± (En + mc2)2

c2

[
22nn!

√
πmh̄ω

(
(En + mc2)2

c2
+ 2nmh̄ω

)]− 1
2

× exp

(
− p2

2mh̄ω

)
Hn

(√
1

mh̄ω
p

)
, (44)

gn(p) = ±
√

n
√

mh̄ω

[
22n−1√π(n − 1)!

(
(En + mc2)2

c2
+ 2nmh̄ω

)]− 1
2

× exp

(
− p2

2mh̄ω

)
Hn−1

(√
1

mh̄ω
p

)
. (45)

These are the momentum space eigenfunctions of the Dirac oscillator without the presence of
the minimal length and coincide with those obtained directly from the usual Dirac equation
with the oscillator-like interaction.

4. Statistical properties

The partition function of the Dirac oscillator, at a temperature T, in the presence of a minimal
length is given by

Zβ̄ =
∞∑

n=0

e−En/kT =
∞∑

n=0

exp


−β̃mc2

√
1 +

βω2h̄2n2

c2
+

2nωh̄

mc2


 . (46)

To avoid confusion with notation, we have set β̃ = 1/kT . The computation of the summation
over n is performed with the aid of Euler’s formula given by

∞∑
n=0

f (n) = 1

2
f (0) +

∫ ∞

0
f (x) dx −

∞∑
p=1

1

(2p)!
B2pf (2p−1)(0), (47)

where B2p are Bernoulli’s numbers and f (2p−1)(0) are derivatives of the function f (x) at
x = 0.

Setting γ = β̃mc2 and y =
√

1 + βω2h̄2n2

c2 + 2nωh̄
mc2 , the integral over x in (47) is then given

by

J =
(

mc2

h̄ω

)
√

1 − βm2c2

∫ ∞

1
dyy

(
1 − βm2c2

1 − βm2c2
y2

)− 1
2

e−γy. (48)

Using the power series of the square root, the integral can be evaluated with the result

J =
(

mc2

h̄ω

)
√

1 − βm2c2

∞∑
n=0

(−1)n
(2n − 1)!!

(2n)!!

(
βm2c2

1 − βm2c2

)n

×
[
(2n + 2)

γ 2n+2
− e−γ

(2n + 2)
�(1, 2n + 2; γ )

]
. (49)

In the high-temperature regime γ < 1, the contributions of the first and third terms in (47)
and that of the second term of (49) are negligible compared to the term 1

γ 2n+2 . Then we obtain

Zβ̄ �
(

mc2

h̄ω

)
(β̃mc2)2

√
1 − βm2c2

∞∑
n=0

(−1)n(2n + 2)
(2n − 1)!!

(2n)!!
αn, (50)
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with

α = 1

(β̃mc2)2

(
βm2c2

1 − βm2c2

)
. (51)

At this stage, we show that for high-temperature expansion α is a small parameter. In fact, we
have 1 > βm2c2 and α is given by

α =
(

(�X)min

lth

)2

, (52)

where lth = h̄c
kT

represents the thermal wavelength obtained at high temperatures. This
wavelength is a characteristic length of the system and in order to be experimentally accessible
must be greater than the minimal length, by virtue of the generalized uncertainty principle (3).
Then α is, as expected, a small parameter.

Then retaining only terms to first order in the deformation parameter β, we obtain

Zβ̄ � (kT )2

h̄ωmc2
− 3β(kT )4

h̄ωmc4

(
1 − 1

6

(
mc2

kT

)2
)

. (53)

Using the fact that
(
1 − 1

6

(
mc2

kT

)2) ≈ 1, we finally obtain the high-temperature expansion of
the partition function

Zβ̄ � (kT )2

h̄ωmc2
− 3β(kT )4

h̄ωmc4
. (54)

The first term is the partition function for the Dirac oscillator without the minimal length [29],
while the second term is the contribution coming from the perturbation of the space by the
presence of the minimal length.

From (54), we deduce the following constraint on the minimal distance:

(�X)min � lth√
3
. (55)

The mean energy defined by U = kT 2 ∂ ln Z
∂T

is then given by

U � 2kT

[
1 − 3

(
(�X)min

lth

)2
]

, (56)

while the heat capacity C = ∂U
∂T

is

C � 2k

[
1 − 9

(
(�X)min

lth

)2
]

. (57)

In the limit β = 0, i.e. a vanishing minimal length, (56) and (57) reduce to mean energy and
heat capacity of the usual Dirac oscillator given, respectively, by 2kT and 2k. Then, at high
temperatures, the mean energy and the heat capacity with the minimal length are weaker than
those in the case without the minimal length.

From (57) we extract a stronger constraint on the minimal length than that given by (55)

(�X)min � lth

3
. (58)

Finally, let us note that the non-relativistic harmonic oscillator is used as a model for
describing the quarks’ confinement in mesons and baryons [30], while the Dirac oscillator is
expected to give a good description of the confinement in heavy quark systems [31]. It was
also pointed that the thermodynamic properties of the one-dimensional Dirac oscillator are
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relevant for the description of a quark–gluon plasma [29, 32]. The quark–gluon plasma is
expected to be produced by ultrarelativistic collisions of heavy ions. In the latter process, a
hot dense hadron gas undergoes an evolution to a thermodynamic equilibrium followed by an
essentially one-dimensional adiabatic cooling [34]. This observation justifies the use of the
one-dimensional Dirac oscillator in a thermal bath to describe the thermodynamic properties
of such a process. The transformation of the hadron gas into a quark–gluon plasma, known as
the deconfinement phase, occurs above a temperature Tc. QCD lattice calculation shows that
the deconfinement phase occurs at Tc � 180 MeV [33–35]. Using Tc in (58), we obtain the
following upper bound for the minimal length:

(�X)min � 0.42 fm. (59)

Let us observe that this bound is consistent with previous ones [18, 19].

5. Conclusion

In this paper, using the momentum space representation, we have solved exactly the Dirac
equation with an oscillator-like interaction in one dimension in the presence of a minimal
length. With the aid of appropriate variable transformations, we mapped the problem to that
of a point particle in a symmetric potential well with boundaries ± π

2mω
√

β
. Then we obtain the

energy eigenvalues and eigenfunctions. Unlike the usual Dirac oscillator in one dimension,
the energy levels share a dependence on n2 like the energy levels of a particle confined in
a potential well and the energy level spacing becomes constant for large n, exactly like a
usual non-relativistic harmonic oscillator. The validity of the obtained results is checked by
rederiving the energy levels and the momentum wavefunctions of the usual one-dimensional
Dirac oscillator obtained in the limit β → 0. The Dirac oscillator with a minimal length in a
thermal bath is also investigated. In the high-temperatures regime, the mean energy and the
heat capacity are weaker, due to the presence of the minimal length, than the ordinary ones
of the ordinary Dirac oscillator. Finally, using the QCD lattice calculation of the temperature
of a quark–gluon plasma, we have obtained an upper bound for the minimal length consistent
with previous ones in the literature.
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